segunda-feira, 18 de agosto de 2014

O número PI

Um número fascinante O número Pi
PI, o valor da razão entre a circunferência de qualquer círculo e seu diâmetro, é a mais antiga constante matemática que se conhece. É também um dos poucos objetos matemáticos que, ao ser mencionado, produz reconhecimento e ate mesmo interesse em praticamente qualquer pessoa alfabetizada.

                                                                    
Apesar da antiguidade do nosso conhecimento do PI, ele ainda é fonte de pesquisas em diversas áreas. Com efeito, dentre os objetos matemáticos estudados pelos antigos gregos, há mais de 2 000 anos, Pi é um dos poucos que ainda continua sendo pesquisado: suas propriedades continuam a ser investigadas e procura-se inventar novos e mais poderosos métodos para calcular seu valor, sendo que a divulgação desses resultados constitui uma das raras ocasiões em que vemos a Matemática atingindo os meios de comunicação de massa. 

Como uma consequência dessa situação, e como uma outra maneira de demonstrar o interesse e fascinação despertados pelo PI, os editores estão sempre a publicar livros dedicados inteiramente ao tema e dirigidos tanto ao grande público como a professores e pesquisadores. Entre os mais recentes, podemos destacar:

  • Lennart Berggren (ed) - Pi: A Source Book
    Springer Verlag, 2nd ed., NYork, 2000
    ( nada menos do que 736 paginas! )
  • J. P. Delahaye - Le fascinant nombre Pi
    Editions Belin / Pour La Science, Paris, 1997.
  • J. Arndt - PI, unleashed.
    Springer Verlag, NYork, 2000. PI está em todos os lugares

    O rolar das ondas numa praia, o trajeto aparente diário das estrelas no céu terrestre, o espalhamento de uma colônia de cogumelos, o movimento das engrenagens e rolamentos, a propagação dos campos eletromagnéticos e um sem número de fenômenos e objetos, do mundo natural e da Matemática, estão associados às idéias de simetria circular e esférica. Ora, o estudo e uso de círculos e esferas, de um modo quase que inexorável, acaba produzindo o PI. Daí a ubiquidade desse número. Ele é uma das constantes universais da Matemática.
    É importante chamarmos a atenção para o fato que também são frequentes as ocorrências do PI em estudos onde aparentemente, principalmente para uma pessoa de pouca formação matemática, não estariam envolvidas simetrias circulares: na normalização da distribuição normal de probabilidades, na distribuição assintótica dos números primos, na construção de números primos próximos a inteiros dados ( na chamada constante de Ramanujan ), e mil e uma outras situações.
    Em verdade, na Geometria Euclidiana, temos quatro constantes que poderiam ser chamadas de PI:
  • o PI de circunferências: a constante de proporcionalidade na relação entre a circunferência de um círculo e seu diâmetro
  • o PI de áreas de círculos: a constante de proporcionalidade na relação entre a área de um círculo e o quadrado de seu diâmetro
  • o PI de áreas de esferas: a constante de proporcionalidade na relação entre a área de uma esfera e o quadrado de seu diâmetro
  • o PI de volumes de esferas: a constante de proporcionalidade na relação entre o volume de uma esfera e o cubo de seu diâmetro
Usando as fórmulas clássicas da Geometria, fica muito fácil expressarmos qualquer uma dessas constantes de proporcionalidade em termos das demais. Por questão de tradição, prefere-se trabalhar exclusivamente com o PI da circunferência de círculos, o qual é denotado internacionalmente pela letra pi minúsculo, a letra inicial da palavra grega periferia que significa perímetro ou circunferência ( essa notação surgiu no início do sec. 1700 e foi adotada e popularizada pelo importante livro Análise Infinitesimal, escrito por Euler c. 1750 ).

Aplicações em geometria


 A razão entre o perímetro de um círculo e o seu diâmetro produz o número PI. É um número que mobilizou e ainda mobiliza muitos matemáticos. A principal curiosidade, no caso do PI, é a obtenção de um valor sempre igual e constante, adicionando-se também um mistério: o de não podermos conhecer a última casa. Por esse motivo, o PI passou a ser representado pela letra (do alfabeto grego). Foi uma estratégia para simplificar o registro.

Voltando ao procedimento matemático, que produziu essa misteriosa constante, poderemos igualar as razões entre os perímetros dos círculos e os seus respectivos diâmetros. Essa proporcionalidade permite escrever que o perímetro de uma roda gigante, dividido pelo seu diâmetro, é igual ao perímetro de uma moeda dividido pelo diâmetro dessa mesma moeda:



Página 3

Na Babilônia, o valor do era considerado igual a três e hoje podemos escrevê-lo com muitas casas depois da vírgula, com as reticências informando que ele não terminou - e não terminará:


3, 14159265358979323846...

Nos livros didáticos, esse número é arredondado para 3,1416 ou 3,14, permitindo cálculos aproximados. No entanto, não podemos esquecer que nunca poderemos afirmar que o valor do é igual a 3,14. Por isso, é essencial que, no cálculo do perímetro, a letra grega apareça para evitar erros:



Página 3

O perímetro de uma moeda com 1,5 cm de diâmetro pode ser calculado multiplicando-se o diâmetro dessa moeda pela constante . Poderemos registrar como P = 1,5. cm. E se quisermos conferir esse perímetro, contornando a borda dessa moeda com uma linha de costura, teremos que calcular esse perímetro considerando um determinado valor para . Nesse caso, podemos multiplicar 1,5 cm por 3,14, fazendo P = 1,5 x 3,14 - que se aproximará bastante do comprimento da linha. E, portanto, do perímetro.



Se o raio de uma roda de bicicleta é igual a 20 cm, então qual é o comprimento do pneu que contorna essa roda? Responderemos pelo perímetro e obteremos um valor teórico de P = 2 x (20 cm) x = 40 cm ou valor experimental de P = 2 x (20 cm) x 3,14 = 125,6 cm.

Fracionando o círculo para calcular a sua área
O número não aparece somente na fórmula do perímetro do círculo. A área do círculo será um conceito que colocará novamente essa constante em uma das fórmulas mais essenciais da matemática.


Essa fórmula é construída fracionando-se o círculo em uma infinidade de triângulos isósceles, sendo que dois lados deverão ter a mesma medida do raio. Além disso, com a preocupação de que esses triângulos sejam iguais, com a medida da base sendo um pequeno segmento do perímetro desse círculo:


Página 3

Dois desses triângulos poderão formar um pequeno paralelogramo, com uma inclinação bem pequena tendendo a um retângulo. Quanto menor for a medida da base desses triângulos, que fracionaram o círculo, mais chance teremos de aproximá-los do formato de um retângulo com altura igual ao raio do círculo. Deverão ser colocados em pares, um encostado no outro:


Página 3

A área de um retângulo é calculada multiplicando-se a medida da sua base pela medida da sua altura. Como cada retângulo é formado por dois triângulos, com a base sendo um pedaço do perímetro do círculo, teremos que imaginar a fragmentação desse círculo em uma quantidade par de triângulos, para que possam ser encaixados dois a dois, sem nenhuma sobra.



Esse encaixe, nesse tipo de quebra-cabeça, formará um retângulo maior com base igual a () x (R) e altura R. É o procedimento de encaixar dois a dois que fará a base do retângulo ter a metade do perímetro do círculo:


Página 3

Essa base, multiplicada pela altura R do retângulo, será () x (R) x (R) e indicará a área desse retângulo, que poderá ser escrito como raio ao quadrado multiplicado pelo número. Resultado que demonstra que um círculo pode ser transformado em um retângulo, para que a sua área seja deduzida e calculada.



Assim, a fórmula da área do círculo poderá ser escrita como:


Página 3

A roda da bicicleta, de que falamos acima, com raio igual a 20 cm, além de ter um perímetro igual a 125,6 cm, terá uma área igual a (20 cm) x (20 cm) x (), isto é 400 cm2. Além disso, poderá ter um valor aproximado se considerarmos um valor numérico para :                                                     400 x 3,14 = 1256 cm2.


São inúmeros os problemas que surgem na matemática envolvendo o perímetro e a área de um círculo. No entanto, talvez o mais importante é percebermos que não podemos estudar geometria sem investigar o número



Pesquisado em: http://educacao.uol.com.br/matematica/numero-pi.jhtm, e http://www.mat.ufrgs.br/~portosil/aplcom1a.html  em 18/08/2014 as 10h00.

3 comentários:

  1. Excelente material para consulta. O Pi bem que merecia uma matéria deste quilate, que é ao mesmo tempo uma descrição precisa e elegante deste magnífico número, como também deixa transparecer o carinho e o respeito que devemos dedicar aqueles que se dedicam a tão digna causa, o conhecimento.

    ResponderExcluir
  2. Gostaria de consultar os "Matemáticos de Mogi" se têm conhecimento de alguma ocorrência do número Pi quando se estudam os fatores que influenciam na sinuosidade dos rios. Grato

    ResponderExcluir
  3. Excelente material para consulta. O Pi bem que merecia uma matéria deste quilate, que é ao mesmo tempo uma descrição precisa e elegante deste magnífico número, como também deixa transparecer o carinho e o respeito que devemos dedicar aqueles que se dedicam a tão digna causa, o conhecimento.

    ResponderExcluir